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(Received 30 August 1973 and in revised form 3 September 1974) 

This paper presents a numerical method for solving linearized water-wave prob- 
lems with oscillatory time dependence. Specifically it considers the diffraction 
problem for oblique plane waves incident upon an infinitely long fixed cylinder 
on the free surface. The numerical method is based on a variational principle 
equivalent to the linearized boundary-value problem. Finite-element techniques 
are used to represent the velocity potential; and the variational principle 
is used to determine the unknown coefficients in the solution throughout the 
fluid domain. To illustrate this method, reflexion and transmission coefficients 
and the diffraction forces and moment are computed for oblique waves incident 
upon a vertical flat plate, a horizontal flat plate and rectangular cylinders, where 
the comparison is made with the existing results by others. Also considered 
is the associated sinuous forced-motion problem, where comparison is made 
with the results for a circular cylinder obtained by Bolton & Ursell (1973). 

1. Introduction 
Small oscillatory motions of an inviscid incompressible fluid with a free 

surface are described by a boundary-value problem governed by Laplace’s 
equation with a mixed boundary condition on the free surface, a homogeneous 
Neumann condition on the bottom of the fluid, and appropriate radiation con- 
ditions at  infinity. Radiation and diffraction problems involving the presence 
of a floating or submerged body require an additional boundary condition on the 
body surface as well, generally stating that the normal velocity of the body and 
fluid are equal. Problems of this type are generally solved by distributing sources 
and/or dipoles on the body surface and using Green’s theorem to obtain an inte- 
gral equation for the strength of these surface singularities, or alternatively by 
using sources and higher-order multipole expansions at an interior point of the 
body, the strengths of these singularities being determined so as to satisfy the 
body boundary condition. In  all cases it is conventional to use the singularities 
that satisfy the Laplace equation, the free-surface boundary condition, the bot- 
tom boundary condition, and the radiation boundary condition. For two- 
and three-dimensional motions with a fluid of infinite depth, or of finite but 
constant depth, the required singularities are well known, although of rather 
complicated analytical form, so that the approach described above corresponds 
to solving a Fredholm integral equation over the body surface, with a rather 
complicated kernel function. 
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In this paper an alternative method is described, based on Bai (1972). A 
variational principle is used to determine the velocity potential throughout the 
fluid domain; and the potential is approximated for numerical purposes by a 
finite-element scheme, using piecewise-continuous two-dimensional polynomials. 
Thus, in effect, an integral equation over a finite domain with a complicated 
kernel is replaced by a system of equations over a much larger domain, for the 
velocity potential throughout the fluid, but with a very much simpler kernel. 
This approach, described in more detail by Bai ( 1  972) and used therein to solve 
two-dimensional and axisymmetric three-dimensional problems, will be used 
here to analyse the diffraction problem for a two-dimensional cylindrical body 
in the presence of oblique incident waves. The resulting fluid motion is three- 
dimensional, but sinusoidal in the direction of the body axis, so that the three- 
dimensional Laplace equation can be reduced to a two-dimensional Helmholtz 
equation. 

Previous studies of oblique wave diffraction by cylindrical obstacles have 
been made by Lebreton & Margnac (1966)) and Black & Mei (1970) for finite 
depth, and by Garrison (1969)) Evans & Morris (1972), and Bolton & Ursell 
(1973) for infinite depth. Lebreton & Margnac (1 966) computed the transmission 
and reflexion coefficients for a rectangular cylinder on the free surface. Black & 
Mei (1970) computed the transmission and reflexion coefficients for a rectangular 
cylinder on the bottom. 

Garrison (1969) computed the transmission and reflexion coefficients for 
a horizontal flat plate of finite beam (i.e. width) on the free surface, whereas 
Evans & Morris (1972) considered the same problem for a vertical flat plate 
of finite draft (depth of submergence) piercing the free surface. These two geo- 
metries can be regarded as limiting cases of a more general rectangular body 
geometry of finite beam and draft; we shall consider this more general case, and 
compute the reflexion and transmission coefficients and the diffraction forces and 
moment for various angles of the obliquely incident waves, comparing with 
the two limiting cases of vertical and horizontal flat plates. Another special case 
is the diffraction problem of a wave normally incident on an infinite rect- 
angular cylinder (i.e. the beam-waves case, which is strictly two-dimensional), 
which has been treated for finite depth by Lebreton & Margnac (1966) and 
Mei & Black (1969). As a method of solution, Black & Mei (1970) also used a vari- 
ational technique based on Schwinger’s variational principle, which gives only 
the far-field solution, whereas the variational scheme to be used in this paper 
gives the potential throughout the domain. We shall also consider the above- 
mentioned more general case in water of finite depth. Bolton & Ursell (1973) 
considered a closely related problem, of the waves generated by a circular cylinder 
oscillating with a vertical heave amplitude that is sinuous, or sinusoidal along the 
body axis. This problem is related by the Haskind relations to the determination 
of the diffraction force, for oblique incident waves; and we shall compare the 
results of Bolton & Ursell (1973) with corresponding calculations based on the 
present numerical scheme. 
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2. Formulation of the problem 
The co-ordinate system is right-handed and rectangular. The y axis is directed 

oppositely to the force of gravity; and the x,z  plane coincides with the free 
surface when the fluid is at  rest. We assume that the fluid is inviscid, incompres- 
sible, and its motion irrotational; hence there exists a velocity potential. Further- 
more, surface tension is neglected, and we assume that the motion is sinusoidal 
in time as well as along the cylinder ( z  axis). 

A simple harmonic plane wave of small amplitude is obliquely incident upon 
an infinitely long fixed cylinder, the direction of the wave propagation making an 
angle a with the x axis. We assume that the linearized velocity potential 

@(x, ?/I 2, t )  

@(x, y ,  z ,  t )  = Re [$(x, y )  exp (iK,x - id)], has a form 

where K ,  is the wavenumber component in the z direction, and CT is the frequency. 
Then O(x,  y ,  z, t )  satisfies 

(2.1) 

in the fluid, 

a 
on the free surface, -CD = 0 (2.4) 

@ = O ,  y = - H  or y = - m  (2 .5 )  
a on the body, - 

an 

an 

on the bottom. KO = a2/g; and H is the depth of water. Finally, we have to 
impose a radiation condition at  1x1 = 00, to make the solution unique. 

To solve the above problem, it is convenient to assume that 

@(x, 9, z ,  t )  = @If @D* (2.6) 

@, and @, are, respectively, the potentials for the incident and the diffracted 
waves. The incident-wave potential CD, of unit wave amplitude is 

where h', = Ktanh(KH), K, = Ksina, Kz = Kcosa. 

Then the boundary condition on the body (2.4) becomes 

As a radiation condition, we require that the diffracted-wave potential 
QD,(x, y, z ,  t )  has an asymptotic behaviour, as x + 00, 
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R and T are respectively the reflexion and transmission coeEcients. When we 
precipitate the t -  and z-dependence of the diffracted-wave potential @,(x, y, 2, t )  
in the above formulation, by using the relations (2.1) and (2.6), (2.2) and (2.5) 
are reduced to 

in the fluid, 

on y = 0, 

a 
an on the body, - $ D = O ,  y = - H  or Y=--oo ,  

where @I = Re &(x, y) exp (iK,z - id)}, 
QD = Re { q 5 0 ( ~ ,  y) exp (iK,z - id)}. 

Finally we have, as a radiation condition a t  infinity, from (2.9), 

(a/ax?iKZ)q5,+O as X J  +a. 

It should be noted that (2.14) reduces to a rigid-vertical-wall condition 

a4,lax = o 
when the angle of incidence a becomes in. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

When we are interested in the forces exerted on the fixed body in an incident 
wave, we can also compute the forces by solving a forced-motion problem and 
using the Haskind relation, instead of solving the diffraction problem formulated 
above. We shall consider here a forced-motion problem, which is very closely 
related to the diffraction problem formulated above. Let the forced motion on 
an infinitely long cylinder be expressed as 

(2.15) 
a - @ = Re {V,(x, y) exp (iK,x - iat)}. 
an 

This expresses, in general, a combination of motions of the three degrees of 
freedom (heave, sway, roll) in the x, y plane which is sinusoidal along the z axis, 
as well as in time t .  Then we obtain, from (2.1) and (2.15), 

Qn@, Y) = K(X,  Y). (2.16) 

Once we assume that the local disturbance of the body decays sufficiently 
at a finite distance X,, from the moving body, we can apply the radiation 
condition (2.14) on x = & X,, for an approximate scheme. Now we have a well- 
posed boundary-value problem defined in a finite domain after truncating the 
infinite boundary, as shown in figure 1, where CB, CB3, C,, CD are, respectively, the 
body boundary, the free surface, radiation boundary and the bottom boundary. 
An analysis of the behaviour of the local disturbance to find an optimum distance 
X,, on which the radiation condition is to be imposed, is given in appendix A. 
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CD 
FIGURE 1. The finite domain after truncating the infinite boundaries. 

When we write down the final formulation again for the numerical scheme 
to be discussed in $3, by dropping the subscript D from $Dl we have, for a dif- 
fraction or forced-motion problem, 

(V, = -@,/an, for a diffraction problem), 

on 

on 

2 = 0 on cD, 
an 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

3. Variational method 
Let us consider a boundary-value problem described for a real function 

Q(x7 Y) as 
(V2-KE)q5(x,y) = 0 in R7 (3.1) 

with the mixed-type boundary condition 

9, +p(z ,  y) 4 - q(x,  Y) = 0 on c. (3.2) 

p(x, y) and q(x, y) are known real functions. Instead of solving directly the bound- 
ary-value problem (3.1) and (3.2), we can avail ourselves of the theory of the 
calculus of variations to find the function -9, which minimizes the associated 
functional.To construct the functional for the problem, we introduce a variation 
8-9, and integrate (3.1) in R and (3.2) on C, after multiplying by 84. Then we 
obtain 

(3.3) 
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If we make use of the Green’s theorem in the first integral in (3.3) and of the rela- 
tion VS$ = SO#, the left-hand side of (3.3) becomes 

We define the functional F{$) as 

F{$l = ss, HI v4 1 2 +  je PI dxdy + w2 - q4) d.9. 
/ C  

(3.5) 

( 3 4  Then we have 

Since (3.6) is equivalent to (3.1) and (3.2), we shall use (3.6). 
The classical variational principle discussed above cannot readily be applied 

to the problem described in 3 2, since $(x, y), p(x, y) and q(x, y) in (3.1) and (3.2) 
are complex functions in the formulation given in (2.17)-(2.21). lJTe shall discuss 
two different formal approaches, to use the variational principle for our problem. 
As a first approach, we can separate the real and imaginary parts in the formula- 
tion of (2.17)-(2.21), and obtain two sets of equations coupled by the radiation 
condition at  the radiation boundary x = 

SF{$) = 0. 

X,: 

a a 2  
d i = 0  ( i =  1,2) in R, (3.7a, b )  

(3.8a, b )  
a 
an 

0 ( i =  1 , Z )  on C,, 

(the lower equation is for the diffraction problem), 

where 

If we treat the radiation condition (3.11) as if the normal velocity were given, 
as in (3.9), and use (3.1), (3.2) and (3.51, we obtain the coupled functionals 
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= /IR ($ [ V$2[ + $KE 4;) dx dy - $KO -IcB V: vl2ds 
JC*  -IcR K,$,$,ds. (3.12b) 

These are positive definite for each function $1 and $2, respectively. It is easy to 
show that the solutions $1 and $2 of the coupled problems 

= 0 (i = 1 , q  (3.13a, b )  

are the real and imaginary parts of the solution of the problem described in 

The second approach, which is neater formally than the first, is to extend all 
the procedures from (3.1)-(3.6) to the complex functions $(x, y), p(x7 y), q(x, y) 
and the complex functional F{$}. Since Green’s theorem remains the same when 
we extend it to the complex functions, we can simply define the associated com- 
plex functional F($} in (3.14) from (3.5): 

(2.17)-(2.2 1 ) .  

When we use this complex functional F{$} in (3.14)) we have to change the 
statement ‘to find the minimum of the functional’, mentioned earlier ‘to find a 
stationary point rather than a minimum’. The complex function # in 

SF{$} = 0, (3.15) 

which causes the first variation of P to be zero, is the solution to (3.1) and (3.2), 
where $(x, y), p ( s ,  y)  and q(s, y) are complex. With appropriate choices of 
p(x ,  y) and q ( x ,  y), the associated complex functional P($} for our problem simply 
becomes 

F {$} = 1 [ [$( Vq5)2 + P l i f  $2] dx dy - &KO $2 ds -IcB V, +ds - is,, $K, $%is. 

(3.16) 

One can also obtain two r e d  functionals, the real and imaginary parts of 

* R  s,, 
the complex funct,ional, defined in (3.14): 
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Here $ = $1 + i$2?  p = r)l+ $2,  q = 41 + i q 2  and = F3{$1, $2} + i& ($1, $2}* 

When we set the first variation of (3.17a, b )  to zero, we obtain 

'F3{$1, $2) = '&{$l, $2) = O .  (3.18a, b )  

It is easy to  show that the solutions of either (3. 18a, b)  are the real and imaginary 
parts of the solution of the differential equations in (3.1) and (3.2), with $(x,y), 
p ( x ,  y) and q ( z ,  y) complex functions. 

Also, one can use any one of the four sets of functionals constructed so far 
(i.e. the two real coupled functionals defined in (3.12u, b ) ,  a single complex 
functional F{$} defined in (3.14), a single real functional F3{g4,, $2}and a single 
real functional F4{$l, $2} defined, respectively, in (3.17a, b ) ) .  It is not surprising 
to have four choices for the associated functionals of the original problem, if one 
remembers that the associated functional for a given differential equation is not 
unique. The functionals P1{$,} and F!{$2} in (3.12u, b )  are positive definite, as 
mentioned before, whereas the functionals F3{$1, $2} in ( 3 . 1 7 ~ )  and F4{& $2} in 
(3.17b) are indefinite. 

As mentioned in $1, the equivalence of differential equations to variational 
problems is basic to the choice of the computational scheme. One significant 
difference between the functional method and the differential equation is the fact 
that  the expressions for the associated functionals in (3.12a, b) ,  (3.14), (3.17a, b )  
involve no second derivatives, owing to theintegrations by parts used to construct 
these functionals. (More specifically, Green's theorem is used here.) It follows that 
the functionals will be well defined if only the first derivative of the function, 
rather than the second, is required to be bounded. Therefore the class of 
admissible functions, in the problem to find the stationary point, is enlarged to a 
space bigger than that for the original differential equations. We now have the 
advantage, while searching for the stationary point of the functional, of being 
permitted to try functions outside the class of those originally admissible. In  
practice, this means that we can now try continuous functions whose first deri- 
vatives are only piecewise continuous. I n  other words, the first derivative can 
have finite discontinuities a t  the juncture points between adjacent elements. 
It is very easy to construct functions that satisfy the above requirements; we 
shall discuss this point in $ 4. 

There exist rigorous mathematical treatments of the convergence, and error, 
of a positive-definite convex functional; the convergence proof for the complex 
functional P{#} in (3.14) is more difficult. It is beyond the scope of this paper to 
give a rigorous proof of convergence for the complex functional: one can find 
a proof, along with an estimate of the error involved, in Strang & Fix (1973). 
A rigorous treatment of the convergence of the indefinite functional (3.17) is 
not a t  present available (Strang 1974, private communication). 

4. Fini te-elemen t discretization 
I n  $ 4  a brief description is given of the finite-element discretization, by which 

the variational form constructed in $ 3 can be reduced into an operational form. 
The complex functional F{$} of a single complex function g4 defined in (3.14) 
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is treated, with the goal of developing a numerical procedure for finding the 
function $(x, y) that makes the functional stationary. The other functionals, 
single or coupled, can be treated by the same procedure; they result in identical 
matrix equations. The corresponding treatment of the coupled functionals similar 
to (3.12) is in Bai (1972). 

Let the region occupied by fluid, up to the place at which the radiation con- 
dition is to be imposed, be subdivided by lines into a (not necessarily rectangular) 
grid. Each connected piece within the subdivision will be called an 'element '. We 
suppose $(x,y) to be a function that is continuous and boundedt (but see the 
discussion in 9 5 )  in the subdivided region. One of the important steps in the pro- 
cedure is the introduction of a set of interpolation functions Ni(x, y), i = 1, . . . , y ,  
associated with each element, of such a character that $ can be approximated as 
a sum of them, each multiplied by the value of $ at, say, a node of the grid 
associated with the element ($i a t  the ith node). However, these values of $i need 
not be nodal values of $, but may be other values (parameters) characterizing 
$ in the element; for our numerical scheme requires finding the stationary point 
of a functional represented in integral form. We write the set of interpolation 

(4.1) 
functions as a row vector 

and the set of nodal values as a column vector 

"1 = "17 N27 . - . 7  NnI, 

{#)" = [$?, $& .-.,$:I* (4.2) 

in an n-node element. The superscript e on {$}, or on $,, $z, ..., $n, means that 
these values are considered in an individual element. We may then approximate 
$ in each element by the sum $ = "I{$)"- (4.3) 

Although in our actual computations an eight-node quadrilateral element 
was used, we shall give for illustration the example of an eight-node square 
element. We consider a square element with one node a t  each vertex, and one at  
the mid-point of each side, as shown in figure 2. The co-ordinates of each node 
and nodal numbers are shown also in figure 2. If we want- t,o interpolate a 
function $(x,y) in this element, and if it is known a t  the eight nodes, we can 
assume it can be expressed as 

$(x, y) = c, + c,x +cay + C4x2+ C5y2 + c,xy + c,xzy + c,xy2. (4.4) 

Ci (i = 1, . . . , 8 )  are the coefficients to be determined. These can be determined if 
we use the eight conditions 

$(x,y)l,=,i = $i (i = 1,8) .  
?I=% 

(xi, yi) are the co-ordinates of the ith node. From (4.4) and (4.5) we obtain 
R 

(4.5) 

-f When the gradient of the function becomes unbounded at a point on the boundary, we 
can introduce a more sophisticated interpolation function in the near field of the singularity. 
The problem of a square-root singularity has been treated by Tong & Pian (1973) in an 
elastic crack analysis. 
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N,(x,y) = 8(1-x) ( l -y2) ,  

NJx,  y) = *{(I - x) (I  - y) - (1 - z2) (1 - y) - ( I  - x) (1 - y"}, 

N4(x,y) = 4 ( l - x 2 ) ( l - y ) ,  

Ndx, y) = *{(I + x) (1 - y) - (1 - x 2 )  (1 - y) - (1 + z) (1 - y"}, 

N,(x,y) = 4(1+x)(1-y2), 

Iy7(x, y) = a{(l +x) (1 + y) - (1 - 2 2 )  ( 1  + y) - ( I  + T )  (1 +)I, 

( - 1 .  

(4.7) ) 

(-1.0) 

( - 1 .  - 

h'. J .  Bai 

I )  

FIGURE 2. Ari eight-node square element,. 

Ce represents the boundary of each Re. The line integral is present only if the 
element has a boundary on which the boundary condition (3.2) is specified. We 
now approximate Fe within each element : 

F e w  = F e w ]  {$}I. (4.10) 

Henceforth we shall simply write Fe for the approximate value. As discussed in 
$3,  it now becomes evident that the interpolation functions Ni(x, y) must be 
chosen in conformity with the nature of the functional F{i)}. I n  particular, they 
should be chosen so that, a t  the interfaces, the approximation to $ is continuous. 
This ensures that there is no contribution to the integral from the interfaces. 

Then, from (4.8) and (4.9), we obtain 

(4.11) 
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For any nodal value we can write, by substituting (4.3) for each element and 
adding all the element integrals, 

Noting that {$} is no longer a function of x and y, but that  [ N ]  is now a function 

Finally, we obtain in the whole region 

or [ A ] { $ }  = [BI. 

a . .  a )  = Kii+hij ,  

The matrix [ A ]  and the column vector [B] are defined, respectively, as 

n n 

r r 

(4.13) 

(4.14) 

(4.14') 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

The formulated problem has now been reduced to (4.14'), a set of linear simul- 
taneous algebraic equations. The coefficient matrix [A] has the desirable proper- 
ties of being symmetric, as one can see readily from (4.15)-(4.17), and of being 
banded if nodes are properly numbered. The actual numerical computations 
of the integrals (4.16)-(4.18) for general eight-node quadrilateral elements are 
made by Gaussian quadrature, having made a co-ordinate transformation into a 
square. A very extensive and detailed exposition of this method can be found in 
Zienkiewicz (1971). 

A typical subdivision of meshes to  solve a finite-depth problem is shown in 
figure 3, and is suitable for wavenumbers of the order 0 2 K a  2 2 in the beam 
sea case (i.e. a = 0'). 
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I’ 

FIGURE 3. A typical subdivision of meshes for a finite-depth problem. 
( H / b )  = 2. -.-, a node. 

5. Results and discussion 
Once the velocity potential is obtained, we can compute the linearized pressure 

(5.1) by Bernoulli’s equation 

(p  and g are, respectively, the density of water and the acceleration of gravity), 
and the wave amplitude by the relation 

P = -pa t  - P9Y 

Y(x , z , t )  = Re{-g-l cDt(x, O,z , t ) }  

= Re {Yo(%, 0) exp (iK,z - id)}. 
Of particular interest is the asymptotic wave amplitude 

Fo = lim \Yo(%, 011. 
Ixl--fm 

(5.3) 

The local force and moment acting on a cross-section of the body are, respec- 
tively, 

(5.4) 

(5.5) 

F = (Fx, Fy); r = (5, y) the position vector; and n = (nl, nz) is the normal vector 
into the body. In  $4 5.1 and 5.2 we treat two specific problems that were analysed 
earlier by other authors. 

5.1. Heaving circztlar cylinder 

The problem considered in 6 5.1 is a circular cylinder undergoing a small forced 
heaving (i.e. vertical) motion, such that the mean position of the centre of the 
circular cylinder is at the origin, and the heave motion is 

( 5 4  y(z, t )  = Re {yo exp (iK,z - i d  +i&r)}. 

In this case, the horizontal force and moment vanish owing to symmetry. The verti- 
caI force may be expressed in terms of non-dimensional coefficients: the added 
mass C, and damping coefficient C,. Following Ursell’s definition, these are 

(5.7) 
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c a  c v  I Fo/7jo I 
r 1 & -7 

This This This 
Ka a0 method BU method BU method BU 

0.25 5 0.6912 0.69 1.012 0.98 0.3410 0.35 
45 0.9307 0.93 1.3423 1.33 0.4797 0.48 
86 3.7331 3.72 0.9425 0-95 1.1636 1.16 

1.25 5 0.4864 0.49 0.2272 0.22 0.8420 0.84 
45 0.4390 0.44 0.2055 0.20 0.9543 0.94 
85 0.7249 0.72 0.1028 0.11 1.9203 2.00 

2.25 5 0-5605 0.57 0.0720 0.07 0.8441 0.84 
45 0.3225 0.33 0.0488 0.046 0.8340 0.81 
85 0.3728 0.37 0.0520 0.051 2.4496 2-42 

TABLE 1. Comparisons of hydrodynamic coefficients and wave amplitudes obtained by the 
variational method with the results of BU (Bolton & Ursell 1973) 

a is the half-beam of the cylinder. (Some authors use the submerged area in 
place of 2a2 in (5.7) and (5.8).) The hydrodynamic coefficients of more general 
cases are described in Wehausen (1971). 

The added mass and damping coefficients and the non-dimensional asymp- 
totic wave amplitude Fo/~,, are computed for Ka = 0.25, 1.25, and 2.25, and for 
the angles of obliqudy propagating waves, 'generated by the heaving circular 
cylinder, of a = 5, 45, 85", respectively. Our computation is compared with 
the results of Bolton & Ursell (1973) in table 1. Agreement is in general good. 
If necessary, accuracy may be improved by taking finer meshes in the fluid 
region, and by using double precision in computation by a digital computer. 
An attempt was also made to compute the hydrodynamic coefficients for large 
Ku (viz. Ka = 35) as a test. One case (viz. Ka = 35 and a = 85") was tested: 
the added mass and damping coefficients were, respectively, 0.02192 and 
0.00001075 (Bolton & Ursell (1973) give, respectively, 0.022 and O*OOOOlS). 
Appendix B describes a modification of the numerical scheme for large Ka; 
a typical subdivision of meshes for this particular case is shown in figure 12. 

5.2. Wave diflraction by a rectangular cylinder 

In  $5.2 we discuss the problem of a plane wave incident upon a fixed rectangular 
cylinder of width 2a and draft b, as shown in figure 4. Our interests are the 
reflexion and transmission coefficients definedin (2.9), as well as the diffraction 
forces and moment. The non-dimensional forces and moment due to an incident 
wave of amplitude YI acting on a fixed body are defined, respectively, by 

fz = I El max/PgYIa, 

fi/ = I Ei/ I max/PgY,a, 

mc = IMIrnaxlPgYIa. 

For a = 0 (i.e. a vertical flat plate), a will be replaced by the half-draft @. 

(5.9) 

(5.10) 

(5.11) 
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Incident Transmitted 

FIGURE 4. The configuration of the body geometry. 
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FIGURE 5. Coefficients for a rectangular cylinder in water of finite dppth. 
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The reflexion and transmission coefficients of the rectangular cylinder (b/a = 3 )  
in water of finite depth (H/a  = y) were computed for the angles of incidence 
a = 45 and 75", and compared with the results of Lebreton & Margnac (1966) in 
figure 5 .  Agreement is good for a = 75", but not for a = 45" (when the non- 
dimensional wavenumber a2u/g is small). 

The reflexion coefficient for a horizontal flat plate (b  = 0) in water of infinite 
depth is compared with results of Garrison (1969) for Ku = 0.2 and Ka = 0.4 
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FIGURE 6 .  Reflexion coefficient in water of infinite depth. b/a = $, H/a = lac. 

(9 (ii) (iii) (iv) (v) (vi) (vii) 
Ka 0 0 0.1 0.2 0.2 0.4 0.4 
Kb 0.2 0-4 0.1 0 0.2 0 0.4 

Variational method Garrison Evans & Morris 
_ _ _ _ _ _  -.-.- - 0 A  

in figure 6. The corresponding non-dimensional force and moment acting on the 
flat plate, owing to the incident waves, are compared with results of Garrison (1969) 
in figures 7 (a) ,  (b) .  Agreement is good in all three cases. For a vertical flat plate 
(a = O ) ,  piercing the free surface, the reflexion coefficient, non-dimensional 
horizontal force and moment are shown in figures 6, 8 (a) ,  (b) ,  respectively. The 
reflexion coefFicient is compared with results of Evans & Morris (1972) for 
K b  = 0.2 and 0.4 in figure 6. At small angles of incidence, the reflexion coefficient 
of the vertical flat plate does not agree very well with the results of Evans & 
Morris (1972); agreement is improved as a: approaches 90". This may be due to the 
sinusoidal interaction mechanism of the strength of the square-root singularity, 
along the z axis, which is more significant as a: approaches 90" (as discussed in 
appendix A). 

To obtain more accurate information near the singularity, one can introduce 
more sophisticated interpolation functions that represent the singularity better 
than the simple polynomial interpolation functions we used in the present com- 
putation. The convergence of the finite-element method for problems with a 
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FIGURE 9. Non-dimensional (a )  horizontal force, ( b )  vertical force, ( c )  moment on a rect- 
angular cylinder in water of infinite depth. bfa = 1, Hfa = 00. h’a: (i) 0.1, (ii) 0.2, (iii) 0.4. 
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FIGURE 10. Reflexion coefficients of a rectangular cylinder in water of finite depth against 
angles of incidence. b/u = 1 ,  H / b  = 2. K a  = K b :  (i) 0.1, (ii) 0.2, (iii) 0.4. 

singularity is treated in Tong & Pian (1973). The strength of the square-root 
singularity in cracked plates is also treated by the finite-element method in Yam- 
mot0 & Tokuda (1973). A rigorous treatment of singularities in the finite-element 
method can be found in Strang & Fix (1973). 

The reflexion coetkient, and the non-dimensional forces and moment €or 
a fixed rectangular cylinder (b/a = I), in water of infinite depth, are shown for 
K a  = 0.1, 0.2 and 0.4 in figures 6 and 9(a)-(c). The reflexion coefficient, the 
non-dimensional forces and moment for a fixed rectangular cylinder, in water 
of finite depth (h/a = 2), are also shown for Ku = 0.1, 0.2 and 0.4 in figures I0 
and 11 (u)-(c). For the cases b/u = 1, b/a = 0 and a/b = 0, the non-dimensional 
moment and the non-dimensional horizontal force (except for b = 0) are nearly 
constant up to a certain angle, then decrease to zero as the angle of incidence 
approaches 90". For the limiting case a = 0, b + 0 (i.e. a vertical flat plate 
piercing the free surface), the reflexion and transmission coefficients, as shown 
by Evans & Morris (1972), are monotonic functions of the angle of incidence. 
The effect of finite angle is to reduce R and increase T. For an opposite 
limiting case a + 0, b = 0 (i.e. a horizontal flat plate on the free surface) R increases 
and T decreases with increasing a. 

An eight-node quadrilateral element was used for the numerical computations. 
Computations were performed on the IBM 370 at the MIT Information Process- 
ing Center. The central processor time for each wavenumber was about 12s  
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for 88 elements and 325 nodes in the case of finite depth (figure 3), and about 22 s 
for 124 elements and 433 nodes for infinite depth. Both these cases are for the 
diffraction problem of a rectangle in oblique incident waves. Approximately 
10 s were taken for 59 elements and 212 nodes for a forced-heave-motion problem 
of a circular cylinder. The main advantage of this method is that any complex 
geometry of the boundary can be easily accommodated: e.g. a bottom with 
variable depth (in the x, y plane) is no more difficult t o  analyse than one of con- 
stant depth. 

The author is grateful to Professor J. N. Newman for suggesting this topic, 
and to Mr Kihan Kim for his assistance in the preparation of the computer 
program. This research was supported by the Office of Naval Research, contract 
N00014-67-A-0204-0023, and by the National Science Foundation, grant 
GK-10846. 

Appendix A 
To examine the behaviour of the local disturbance, we can use the eigen- 

function expansions in water of finite depth. Then we can extend this result to 
the case of infinite depth, unless the angle a of the obliquely incident wave is 
zero.? 

To find how fast the local disturbance of an oscillating body decays along the 
free surface, we construct two imaginary vertical boundaries, which extend from 
the bottom to the free surface, including any moving body in between. First 
we assume the depth is constant (i.e. y = - H ) .  Then we can consider an infinitely- 
flexible-wall wave maker in a semi-infinite tank, which may be either of the two 
imaginary boundaries. I n  this wave-maker problem, we can assume that the solu- 
tion is 

$ = $,+$L, (A 1) 

q5p = Co cosh [mo(y + H )  exp (iKxx)], (A 2) 

$L = Ccicos[m,(y+H)exp(-Nix)], x 2 0, (A 3) 

rn, = K ,  KO = -mi tan (m,H), Nq = mf + Ki. (A 4) 

x 2 0, 

with the relation 

The coefficients Go and Ci (i = 1,2, .  . .) can be determined from the boundary 
condition on the wave maker; but we are not presently interested in finding them. 

Since Nl is the smallest eigenvalue and accordingly gives a component of the 
slowest decay among all possible components of the local disturbance, we define 
the decay factor 

d(x) = exp(-NIX). (A 5) 

t When a = O o ,  this problem is reduced to a strictly two-dimensional problem in water 
of infinite depth. In this case we cannot use the eigenfunction expansion; instead we use a 
pulsating source. When a is small, even if not zero, we cannot in general obtain useful informa- 
tion for the truncation of the infinite boundary, to find the optimum distance for the numeri- 
cal scheme. 
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From the well-known relation 

we have 

From (A 5 )  and (A 7), we have 

(A 6) 

(A 7) 

(A 8) 

The local disturbance always decays faster than d(x). Therefore we can use 
d(x) as a criterion to truncate the infinite boundary, and construct a 'new 
boundary ' on which the radiation condition (2.2 1 )  is to be imposed in the numeri- 
cal scheme. 

Let us consider two examples. (i) When K, < 7~ / (2H) ,  we have 

Nl r 37/(2H), Nl > n/ (2H);  ( A  9% b )  

and we obtain an inequality 

d(x) < exp [ - nx/(SH)].  (A 1.0) 

The relation (AlO) shows that the local disturbance is reduced to, at  least, 
exp ( -  3n) times its value a t  the wave maker (i.e. x = 0), when we take the 
distance from the wave maker equal to four times the depth. 

(ii) When the depth H becomes very large, such that K,  9 77/(2H), we have a 
relation for the decay factor 

d(x)  r exp(--K,z), d ( x )  < exp(-K,x). ( A  11 a, b )  

Relation (A 11)  shows that, if K,  = 1 (m-l), then the decay of the local disturb- 
ance is at least, as small as exp ( - 371.) times its value on the wave maker when 
we take x = 271. (m) ,  where K, is the z component of the wavenumber. This (rather 
crude) criterion is useful in finding an optimum distancet for truncating the 
infinite boundary. When this criterion gives too large a distance, or when we 
do not have an appropriate criterion, it is necessary to use a trial-and-error 
method of testing several different distances. Also, a local disturbance decays 
faster as a increases when K is fixed, i.e. the local disturbance vanishes more 
rapidly in oblique waves (a > 0) by comparison with the beam sea case (a = 0). 
Presumably this is due to the interaction along the z axis and resulting cancell- 
ation of the local disturbance. Bai (1972)  discussed the behaviour of local 
disturbances in water of infinite depth in two dimensions (a = 0). 

Appendix B 
In  water of infinite depth, when Ku is very large, a slight modification is 

necessary to construct the radiation and bottom boundaries for numerical 
computation. We consider here a particular case: Ka = 35 and a = 85". For 
simplicity, we assume a = 1 (m). Then we have 

K = 35 (m-l) and K,  = 35 sin 85" 2 35. 

t The optimum distance from the body is large enough to neglect the local disturbance, 
and small enough to solve economically, and to  neglect the significant accumulation of 
round-off errors. 
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FIGURE 12. A typical subdivision of meshes for a circular cylinder 
on the free surface. Ka = 35, a = 85. 

The wavelength is 2n/K z 0*18(m). From ( A l l ) ,  the local disturbance is at  
least as small as exp ( -  2n) times its value at  the intersection of the circular 
cylinder and the free surface, when we consider the potential at  one wavelength 
(i.e. 0.18m) from this point on the free surface. If we had examined the be- 
haviour of the local disturbance, by making use of the eigenfunction expansion 
in the polar co-ordinate, we might have obtained the decay factor defined in 
appendix A in terms of radius r and angle a, rather than x, along the free surface. 
Hereafter, we conjecture that the local disturbance decays approximately 
in a similar fashion in all radial directions in the fluid, as in the relation (A 11). 
It should be noted that the apparent wavelength in the 2, y plane (27r/K,) 
is much larger than the real wavelength of 0.1 8 m. 

If the local disturbance is confined to a thin layer along the cylinder, we 
may attempt to construct a new boundary condition along a fictitious circular 
boundary which encloses the local disturbance. We can easily construct the 
required boundary condition, making use of the normal vector n = (nl,n2), 
pointing outward on the fictitious boundary, say the outer circle. It can be 
expressed as 

a#/& - n2 KO # = in, hrz #. (B 

KO and ITz are as defined earlier. A detailed derivation of the relation (BI) 
is given by Bai (1972). As an illustration, the subdivision of the meshes for 
Ka = 35 and a = 85' is shown in figure 12. 
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